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Introduction
Various estimators of the central direction for rotations
in SO(3) have been proposed in the literature but lit-
tle attention has been paid to comparing these estima-
tors with respect to statistical properties such as bias
and sampling variability. We compare four estimators
across three commonly used distributional models from
the family of uniform-axis random spin distributions.
Three of these estimators have previously been studied
whereas we adapt Fisher’s spherical median to rotation
matrices for the first time. Through the means of a simu-
lation study, we show that no estimator performs optimal
across all distributions but rather that the performance of
the estimators depends on underlying distribution char-
acteristics.

SO(3) Data and its Uses
Orientation data in three dimensions can be repre-
sented by 3 × 3 rotation matrices that are orthogo-
nal with determinant 1. The set of these matrices
is commonly called the rotation group SO(3). For
our study we consider three popular symmetric ro-
tational distributions for various values of the cir-
cular spread, ν. This type of data is used by com-
puter scientists interested in computer vision, and
kinesiologists in modeling the movement of joints.

Estimators for SO(3) Data
We consider four estimators of the central direc-
tion. They are means and medians based on the
Euclidean and Riemannian distances in SO(3) de-
fined below, respectively:

dE(o1,o2) = ‖o1 − o2‖F , (1)

dR(o1,o2) =
1√
2
||Log(o>1 o2)||F . (2)

For a sample o1, . . . ,on of random rotations the
four estimators are defined as follows:

Name Definition
Fisher’s Median *S̃E minS

∑n
i=1 dE(oi,S)

Projected Mean ŜE minS

∑n
i=1 d

2
E(oi,S)

Geodesic Median S̃R minS

∑n
i=1 dR(oi,S)

Geometric Mean ŜR minS

∑n
i=1 d

2
R(oi,S)

Table 1: Estimators of the central direction.

* indicates the estimator we propose for the first
time.

S̃E in Detail
Identification of the median in Rd, often referred to
as the Weber problem, was famously solved by the
Weiszfeld algorithm [3]. We modify this algorithm
by evaluating only proper rotations, i.e., o ∈ SO(3).
Any rotation can serve as the initial starting rota-
tion, S̃(0), so without loss of generality we choose
ŜE to speed convergence. Let l denote the iteration
of the algorithm, beginning with l = 1:

1. Set si = oi − S̃(l−1).
2. Calculate

ōW =

∑n
i=1 oi/||si||F∑n
i=1 1/||si||F

.

3. Define S̃(l) to be the projection of ōW into
SO(3).

4. Repeat this process until ε > ||S̃(l−1)− S̃(l)||F

Application
To evaluate the performance of the estimators on
real data, we use the drilling data found in [2]. The
goal of the study was to compare the variability be-
tween and within the orientations of 8 subjects (5
observations each) whilst drilling (Figure 1).

Figure 1: Data from [2].
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Figures 2 and 3 display ŜE and S̃E with 95% boot-
strap intervals, respectively, for each individual
and the combined data. Since the data are highly
concentrated, the difference between dR and dE is
small so only dE based estimators are considered
here.

Figure 2: ŜE estimates with
95% CIs.

Figure 3: S̃E estimates with
95% CIs.

ŜE performs better at detecting the large between
variability relative to within variability.

Simulation Results
In the following we summarize and present a subset of the simulation study findings. For each set of the
simulated samples the estimation error is determined using the Riemannian distance. The error distribu-
tions for each estimator with ν = 0.25 and ν = 0.75 can be found in Figures 4 and 5 respectively.
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Figure 4: Error distributions of the Estimators for ν = 0.25 and
n = 10, 100
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Figure 5: Error distributions of the Estimators for ν = 0.75 and
n = 10, 100

To further investigate the performance of ŜE and ŜR in Figure 5, consider Figures 6-9 which plot both
estimators for the von Mises Fisher and Cayley distributions for two values of ν.

Figure 6: Fisher, ν=0.25 Figure 7: Fisher, ν=0.75 Figure 8: Cayley, ν=0.25 Figure 9: Cayley, ν=0.75

For highly concentrated data the estimator tend to agree (Figures 6 and 8). For more dispersed data (Figures
7 and 9) the results differ by distribution, but ŜE proves more resistant to extreme observations as indicated
by the large number of points in the upper left corner of both figures. This is supported by the observation
that on average ŜE is preferred for the von Mises Fisher distribution (heavy tails), whereas the opposite is
true for the Cayley distribution (light tails).

Further Research
We plan to support these empirical findings with theo-
retical arguments and extend our work to estimation of
the concentration parameter κ, which has also been given
little attention in the literature. An R package is under
development that will generate data from various rota-
tional distributions and provide efficient algorithms for
computing estimators of the central direction.
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