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Introduction
Though point estimation for random rotations has re-

ceived considerable attention (see [3] for a review), in-

ferential techniques are more limited. Here we derive the

limiting distribution for extrinsic Lp estimators, which can

be used to form asymptotic confidence regions (CR). Ad-

ditionally we propose a nonparametric bootstrap CR that

achieves close to nominal coverage rates for small n. In

a simulation study we compare our methods to already

existing ones in the literature.

SO(3) Data and its Uses
• Orientation data in three dimensions can be rep-

resented by 3 × 3 orthogonal matrices with deter-
minant one; the group of all such matrices is the
rotation group denoted SO(3).

• Some areas of application: structural geology, kine-
matics, material sciences, computer vision

• We consider the location model in SO(3) given by

Ri = SEi (1)

where Ei ∈ SO(3) are i.i.d. directionally symmetric
perturbations of the central orientation S ∈ SO(3).

• (1) is analogous to the model yi = µ + ei on R for

ei
iid∼ (0, σ2)

(a) x-axis (b) y-axis

(c) z-axis

Figure 1: A random sample from the SO(3) loca-

tion model with S = I3×3 and Ei
iid∼Cayley(κ = 50)

• Two approaches to estimating S in (1): the extrin-
sic approach based on the Euclidean distance and
the intrinsic approach which makes use of innate
SO(3) topology by using Riemannian distance, see
[3] for more details.

Extrinsic Lp Estimators
• Extrinsic (projected) estimators are based on the

Euclidean distance metric defined for rotations R1,
R2 ∈ SO(3) as

dE(R1,R2) = ‖R1 −R2‖F

where ‖A‖2F = tr(A>A) is the Frobenius norm of
the matrix A and tr(·) is the matrix trace

• The projected median is defined as

Ŝ1 = arg min
S∈SO(3)

n∑
i=1

dE(R1,S)

• The projected mean is defined as

Ŝ2 = arg min
S∈SO(3)

n∑
i=1

d2
E(R1,S) = arg max

S∈SO(3)

tr(S>R)

where R =
∑n
i=1 Ri/n.

Large Sample Theory
Proposition: Assume R1,R2, . . . ,Rn are a sam-
ple of i.i.d. observations from a rotationally sym-
metric location model with central orientation S,
ŜP = arg minS∈SO(3)

∑n
i=1 d

p
E(Ri,S) is a consistent

estimator for S and ĥp satisfies exp[Φ(ĥp)] = S>ŜP .
Then √

nĥp
d→MVN3

(
0,

c

2d2
I
)

as n→∞ or equivalently

2nd2

c
‖ĥp‖ → χ2

3 (2)

as n→∞. When p = 1, ŜP = Ŝ1,

c =
1

6
E[1+cos(r)] and d =

1

12
E

[
1 + 3 cos(r)√

1− cos(r)

]
;

assuming that Ŝ1 6= Ri for all i guarantees d is de-
fined. When p = 2, ŜP = Ŝ2,

c =
2

3
E[1− cos2(r)] and d =

1

3
E[1 + 2 cos(r)].

From (2), the set of rotations R that satisfy

2nd̂2

ĉ
dR(ŜP ,R)2 < χ2

3,1−α

form a 100(1−α)% CR for the central orientation

S where ĉ and d̂ are consistent estimators of c
and d, respectively.

Simulation Study

• The convergence rate of (2) is different for Ŝ1 and

Ŝ2, see Figure 2 (right).

• Different c, d values for Ŝ1 and Ŝ2 result in differ-
ent asymptotic variances, Figure 3 (below) illustrates
the effect on CR coverage rates.
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Figure 3: Coverage rates for 90% CRs using Ŝ1 (dashed) and

Ŝ2 (solid)

• Existing CR methods based on Ŝ2 rely on eigen-
vector asymptotics, our result is moment-based. No
other CRs centered at Ŝ1 exist.

• Figure 4 (right) compares existing methods (denoted
“Eigen”) to our method (denoted“Moment”); for nor-
mal theory see [1], for bootstrap see [2].
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Figure 2: Critical value ECDF and theoretical limiting χ2
3

distribution
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Figure 4: Coverage rates for 90% CRs using Ŝ2 based on new
(solid) and existing methods (dashed)

Discussion

• Ŝ1 has a larger asymptotic variance than Ŝ2 for ro-
tationally symmetric samples.

• Critical value based on Ŝ1 converges more slowly
than for Ŝ2.

• All CR methods monotonically approach nominal
coverage rate as n increases.

• Moment-based methods generally perform best, es-
pecially for small n.

Further Research
• Explore estimator and CR behavior under more

general assumptions

• Extend the result to intrinsic estimators

• Quantify differences in extrinsic versus intrinsic es-
timation choice
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