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PLANT BREEDERS AND SURVEYS

Survey Statisticians

I Interested in
behavior/beliefs, e.g. PA
levels

I Ask participant about PA
levels

I Calibrate survey to infer
about true PA level

I Estimating usual PA
distribution

Plant Breeders

I Interested in
traits/phenotypes, e.g.
yield

I Gather genotype
information

I Combine with field data to
understand genome

I Predict future yield
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COMMON PROBLEMS AND SOLUTIONS

Problem

I Highly correlated
covariates

I Many unimportant
covariates

I Lots of noise

Solution

I Only include one
prominently

I Exclude unnecessary ones

I Model it
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PAMS OBJECTIVES

The Physical Activity Measurement Study (PAMS) is a survey
designed to obtain information on physical activity patterns of

I Adult women and men (21-70)

I Hispanic and African American populations (limited
sample size)

I Rural and non-rural adults
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PAMS OBJECTIVES, CONTINUED
More specifically,

I Individuals are sampled from four counties in Iowa:
Marshall, Black Hawk, Dallas and Polk.

I Goal is 1200 participants at the end of the study, spanning
two years.

I Approximately equal number of males and females.

I Approximately 10% African American and 10% Hispanic.

I Minorities over sampled.
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DATA COLLECTION PROCESS

Data collection was intended to sample individuals uniformly
over two years, partitioned into eight quarters.

At the individual level:
I Data were collected on two non-consecutive installments.

I For each installment:

I Individual wore SenseWear Monitor for 24 hours.

I 24-hour activity recall administered via phone the
following day.

I Individuals filled out physical activity propensity
questionnaire (PAPQ): 76 questions resulting in 279
columns per row
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PAMS ANALYSIS

I My goal is to predict usual PA level based on PAPQ

I For each of the proposed models I will use 5-fold
cross-validation to asses predictive accuracy

I Leave a random 1/5 of the observations out of the dataset,
fit the model to the remaining observations and predict
those that were left out

I Compute the root mean square prediction error (RMSPE)
and test set correlation (Corr) for the full predicted dataset
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DATA

Below is a histogram and table summarizing the data I use

Gender n PA(Met Min) BMI Age
Both 259 2125.79 (546.86) 29.83 (7.35) 49.14 (13.12)
Female 157 1952.93 (427.28) 30.05 (7.77) 51.46 (11.89)
Male 102 2391.87 (603.31) 29.49 (6.67) 45.57 (14.16)
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LINEAR MODELS

Usual set-up:
yi = x′iβ + εi

with y and X known, β a parameter vector, E(εi) = 0 and
Var(εi) = σ2 for σ2 a constant.

I Easy to communicate to quantitatively challenged
individuals

I Inference requires some distributional assumption

I May require transformation to achieve this distributional
assumption

I Requires tinkering to solve problems on previous slide
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BAYESIAN LASSO & REGRESSION (BLR1)

General set-up:

yi = µ+ x′ri
βr + x′liβl + ui + εi

where, Xr a matrix of “fixed” effects, Xl a matrix of “random”
effects,
µ an intercept

βr a vector of regression coefficients

βl a vector of LASSO coefficients

ui a random person effect

εi remaining noise

1de los Campos (2009)
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BLR, PRIORS

More details,

yi = µ+ x′ri
βr + x′liβl + ui + εi

where
µ ∼ N(0, σ2

µ), σ2
µ chosen or modeled

βr ∼ N(0, Iσ2
r )

βlj ∼ N(0, σ2
ε τ

2
j ), τ

2
j ∼ Exp(λ) and λ ∼ p(λ)

u ∼ N(0,Aσ2
u), A covariance computed from genealogy

εi ∼ N(0, σ2
ε )

σ2
m ∼ χ−2(Sm, dfm) for m ∈ {ε,u, r}
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BLR RESULTS
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TREES

Time spent at > 3
Met-minutes (min.)

BMI < 27

Age < 37

60

Age ≥ 37

20

BMI ≥ 27

0

I Classification tree for
discrete response

I Regression tree for
continuous response

I Use covariate information
to predict individual
response

I Estimates and predictions
are binned
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TREE RESULTS
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RANDOM FOREST

Assume a sample of size N with M covariates. To build each
tree:

1. select n observations from N without replacement, called
“in-bag” observations

2. at each node randomly select m covariates from which to
split

3. with the complete tree classify the N − n “out-of-bag“
observations

A forest’s predictive accuracy is measured by it’s “out-of-bag”
(oob) error rate
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RANDOM FOREST RESULTS
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Drawbacks: interpretability, parsimony, explicability
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MOTIVATION

In plant breeding context we may be able to improve on basic
random forest

I Have 10’s of covariates associated with design/pedigree

I Have 1000’s of highly correlated or uninformative markers

I Why not use BLR concept with random forest predictive
power?
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DETAILS

Assume a sample of size N with M covariates, M1 which are
known to be informative and M2 which are highly correlated
and largely uninformative. To build each tree:

1. select n observations from N without replacement, called
“in-bag” observations

2. at each node split based on {M1,m2} covariates where m2
are chosen randomly from M2

3. with the complete tree classify the N − n “out-of-bag“
observations
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MODIFIED RF RESULTS
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INTRODUCTION PAMS REVIEW ESTABLISHED MODELS NEW METHOD CONCLUSIONS

DISCUSSION

I When there are lots of covariates that hold little to no
information it’s better to ignore a lot of them

I When all covariates have atleast some unique information
this method is not as useful

I Here it seems that each individual question has something
to contribute
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Thanks! Questions?
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