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Electron Backscatter Diffractiona

aimages from www.EBSD.com

• Electron backscatter diffraction (EBSD) is used to learn about the microstruc-
ture of crystalline materials

• Phase discrimination, texture analysis, crystal orientation mapping...
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Crystal Orientationa

aimages from www.EBSD.com

• Each image is translated into an orientation

• Orientations are expressed as 3×3 orthogonal matrices with determinant +1

• Crystal orientations are crucial in texture analysis and grain boundary iden-
tification
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Example Data

• We consider EBSD data ob-
tained by scanning a nickel sur-
face 14 times

• Interest is in the orientation of
cubic crystals on the metal sur-
face at a each location

• How should multiple scans be
summarized?
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Extreme observations

• When multiple scans are available they are combined to form one coherent
grain map
• For locations on the boundary of two grains, the measurements can be mix

of the two grains
• In that case the mean doesn’t represent either grain but other estimators can



Robust Rotations: Slide 6 of 18

Extreme observations

• When multiple scans are available they are combined to form one coherent
grain map
• For locations on the boundary of two grains, the measurements can be mix

of the two grains
• In that case the mean doesn’t represent either grain but other estimators can



Robust Rotations: Slide 7 of 18

In This Talk

1. Introduce a measure of discord for the rotation group

2. Propose a new estimator based on that measure

3. Introduce the influence functions for the rotation group to better understand
estimator behavior

• Establishing a hierarchy of robust estimators

• Understand when to use which estimators
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Matrix Representation of Rotations

• SO(3) - collection of all 3× 3 orthogonal matrices R
with det(R) = 1

• R ∈ SO(3) is associated with W = (w1, w2, w3)
> ∈ R3

R = exp[Φ(W )] = cos(r)I + sin(r)Φ(U ) + (1− cos r)UU>

where

– Φ(W ) =

[
0 −w3 w2
w3 0 −w1
−w2 w1 0

]
– r = ‖W ‖ and U = W /‖W ‖ ∈ R3

– r and U termed misorientation angle and axis, respectively
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Statistical Treatment of SO(3)

• R1, . . . ,Rn ∈ SO(3) random sample from

Ri = SEi,

the SO(3) analog to yi = µ + εi where

– S ∈ SO(3) - parameter measuring central tendency

– E1, . . . ,En ∈ SO(3) i.i.d. random rotations each with ri, Ui

– Ui uniformly distributed on unit sphere

– ri distributed symmetrically about 0 on the interval [−π, π)

– ri and Ui are independent for all i
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M -Estimators in SO(3)

• M -estimators for the central orientation S ∈ SO(3) are of the form

Ŝ = argmin
S∈SO(3)

n∑
i=1

ρ(Ri,S)

• Three common choices of ρ(Ri,S)

– The projected mean ρ(Ri,S) = ‖Ri − S‖2F ∝ −tr(S>Ri)

– The projected median ρ(Ri,S) = ‖Ri − S‖F

– The geometric median ρ(Ri,S) =
1√
2
||Log(R>i S)||F
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Efficient and Robust Estimator

• We propose a weighted mean that balances robustness and efficiency

argmin
S∈SO(3)

n∑
i=1

wi‖Ri − S‖2F = argmax
S∈SO(3)

tr(S>RW )

where

– RW =
∑n

i=1wiRi

– w−1i ∝
√
Hi and

Hi =

∑n
i=1 ‖Ri − ŜE‖2F −

∑
j 6=i ‖Rj − Ŝ

(i)
E ‖2F∑

j 6=i ‖Rj − Ŝ
(i)
E ‖2F/(n− 2)

– Ŝ
(i)
E is the projected mean for the sample after omitting Ri
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More on Hi

• Hi is a discord measure orig-
inally proposed by Best and
Fisher (1986) for polar data on
the sphere

• If Ei ∼ von Mises-Fisher then
Hi ∼ F1,n−2

• If Ei ∼ Cayley or matrix Fisher
then Hi ∼ F3,3(n−2)
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Simulation Study Design

• Samples R1, . . . ,Rn were generated from the model

Ri = SEiI(i ∈ G1) + S∗Ei[1− I(i ∈ G1)]

– I(i ∈ G1) =
{
1 if i ∈ G1
0 otherwise

– Ei ∼Cayley(I3×3, κ = 50)

– P (i /∈ G1) = 0, 0.1, 0.2

– n = 10, 25 and 50

– S∗ = exp
[
Φ
(
[r∗, 0, 0]>

)]
– r∗ ∈ {π/4, π/2}
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Simulation Study Results
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Influence Functions

• Influence functions (IF) have been derived to explain estimator behavior
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Discussion and Future Research

• The weighted mean has promising empirical properties but no theoretical re-
sults are available

• Other robustified L2 estimators are of interest: winsorized mean, trimmed
mean, Huber estimators

• IFs are one way to compare extrinsic and intrinsic approaches to SO(3) data
analysis

• We have approximated the IF for the geometric median but a closed form
solution is currently unavailable
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