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Electron Backscatter Diffraction?

gimages from www.EBSD.com

e Electron backscatter diffraction (EBSD) is used to learn about the microstruc-
ture of crystalline materials

e Phase discrimination, texture analysis, crystal orientation mapping...
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Crystal Orientation?

gimages from www.EBSD.com

e Each image is translated into an orientation
e Orientations are expressed as 3 x 3 orthogonal matrices with determinant +1

e Crystal orientations are crucial in texture analysis and grain boundary iden-
tification
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Example Data

e We consider EBSD data ob-
tained by scanning a nickel sur-
face 14 times

e [nterest is in the orientation of
cubic crystals on the metal sur-
face at a each location

e How should multiple scans be
summarized?
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Extreme observations

e When multiple scans are available they are combined to form one coherent
grain map

e For locations on the boundary of two grains, the measurements can be mix
of the two grains

e |n that case the mean doesn’t represent either grain but other estimators can
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In This Talk

1. Introduce a measure of discord for the rotation group
2. Propose a new estimator based on that measure

3. Introduce the influence functions for the rotation group to better understand
estimator behavior

e Establishing a hierarchy of robust estimators

e Understand when to use which estimators
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Matrix Representation of Rotations

e SO(3) - collection of all 3 x 3 orthogonal matrices R
with det(R) =1

e R c SO(3) is associated with W = (w1, wy, w3)" € R?

R = exp|®(W)] = cos(r)I +sin(r)®(U) + (1 — cosm)UU "

where
0 —W3 W2
- ‘I)(W) = W3 0 — w1
—Wy W1 0

_r=|W]|andU = W/|W| € R?

— r and U termed misorientation angle and axis, respectively
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Statistical Treatment of SO(3)

e Ri,... . R, € SO(3) random sample from
Ri — SE’L?
the SO(3) analog to y; = i + €; where

— S € SO(3) - parameter measuring central tendency

- Ey,...,E, € SO(3)i.i.d. random rotations each with r;, U;
— U, uniformly distributed on unit sphere

— r; distributed symmetrically about 0 on the interval [—7, )

— r; and U, are independent for all ¢
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M-Estimators in SO(3)

e M -estimators for the central orientation S € SO(3) are of the form

S = argmm p(R;, S)
Se50(3) Z

e Three common choices of p(R;, S)

— The projected mean p(R;, S) = ||R; — S||% < —tr(ST R;)
— The projected median p(R;, S) = | R; — S||r

— The geometric median p(R;, S) = ||Log(RZ-TS)HF
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Efficient and Robust Estimator

e We propose a weighted mean that balances robustness and efficiency

argmmezHR S||% = arg maxtr(S' Ry)
SeS0(3) ] §e50(3)

where
- Ry =3, wiR
- w; ! o< /H; and

L Sl B = Sl = 5 1R - 51

S lIR — 813/ (n —2)

- §g) is the projected mean for the sample after omitting R
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More on H,

e [, is a discord measure orig-
inally proposed by Best and
Fisher (1986) for polar data on

the sphere
H|z05
o If E/, ~ von Mises-Fisher then
Hi~ Iy,
o If E/; ~ Cayley or matrix Fisher
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Simulation Study Design

e Samples R4, ..., R, were generated from the model
R, = SEZI(Z - gl) + S*Ez[l — [(i € 91)]

: . 1 ifi e G A
—1ieG)= {O otherwise e —]
- E; NC&Y|€Y(I3X3, K = 50) o
~ P(i ¢ G1) = 0,0.1,0.2 7\
— n = 10,25 and 50 R
/,/ - )
-5 =exp|@ ([r,0,0]7)] Vs

—r*e{n/4,7/2}
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Simulation Study Results

Estimator — Proj. Mean == Weighted Mean Proj. Median Geom. Median
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Influence Functions

e Influence functions (IF) have been derived to explain estimator behavior
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Discussion and Future Research

e The weighted mean has promising empirical properties but no theoretical re-
sults are available

e Other robustified Lo estimators are of interest: winsorized mean, trimmed
mean, Huber estimators

e IFs are one way to compare extrinsic and intrinsic approaches to SO(3) data
analysis

e We have approximated the IF for the geometric median but a closed form
solution is currently unavailable
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