Inference for the Central Direction of Random Rotations in $\mathrm{SO}(3)$

Joint Statistical Meetings 2013

Bryan Stanfill, Ulrike Genschel and Heike Hofmann Department of Statistics Iowa State University

August 8, 2013

Outline

Introduction
CoDA
Rotation Data
Confidence Regions
Setup
Result
Pivotal Bootstrap
Simulation Study
Extension
Future Work

CoDA Poster

- My CoDA poster included the following illustration of confidence regions for $S O(3)$ data
- In this talk I provide the theoretical justification for these plots

Location Model in $S O(3)$

- $\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{n} \in S O(3)$ random sample from

$$
\begin{equation*}
\mathbf{R}_{i}=S E_{i}, \quad i=1, \ldots, n \tag{1}
\end{equation*}
$$

- Where
- $\operatorname{SO}(3)$ - collection of all 3×3 matrices \boldsymbol{R} with $\operatorname{det}(\boldsymbol{R})=1$ and $\boldsymbol{R}^{\top} \boldsymbol{R}=\boldsymbol{I}$
- $S \in S O$ (3) - parameter measuring central tendency
- $E_{1}, \ldots, E_{n} \in S O(3)$ i.i.d. random rotations (symmetrically perturb S)
- Real line analog: $Y_{i}=\mu+e_{i}$ for $\mu \in \mathbb{R}$ and $e_{i} \in \mathbb{R}$ additive error symmetrically distributed around zero

Rotation Matrices Construction

\boldsymbol{R} associated with skew-symmetric matrix $\boldsymbol{\Phi}(\boldsymbol{W})$

$$
\mathbf{\Phi}(\boldsymbol{W})=\left[\begin{array}{ccc}
0 & -w_{3} & w_{2} \\
w_{3} & 0 & -w_{1} \\
-w_{2} & w_{1} & 0
\end{array}\right]
$$

for $\boldsymbol{W}=\left(w_{1}, w_{2}, w_{3}\right) \in \mathbb{R}^{3}$ according to

$$
\begin{equation*}
\boldsymbol{R}=\exp [\boldsymbol{\Phi}(\boldsymbol{W})]=\cos (r) \boldsymbol{I}+\sin (r) \boldsymbol{\Phi}(\boldsymbol{U})+(1-\cos r) \boldsymbol{U} \boldsymbol{U}^{\top} \tag{2}
\end{equation*}
$$

- $r=\|\boldsymbol{W}\|_{F}$ and $\boldsymbol{U}=\boldsymbol{W} /\|\boldsymbol{W}\|_{F}$
- r distributed symmetrically about 0 independent of \boldsymbol{U} distributed uniformly on unit sphere
- r and \boldsymbol{U} termed misorientation angle and axis, respectively

Projected Mean

- The projected mean is the most developed estimator

$$
\widehat{\boldsymbol{S}}=\underset{\boldsymbol{S} \in S O(3)}{\arg \min } \sum_{i=1}^{n} d_{E}^{2}\left(\boldsymbol{R}_{i}, \boldsymbol{S}\right)=\underset{\boldsymbol{S} \in S O(3)}{\arg \max } \operatorname{tr}\left(\boldsymbol{S}^{\top} \overline{\boldsymbol{R}}\right)
$$

- $\overline{\boldsymbol{R}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{R}_{i}$ and $d_{E}\left(\boldsymbol{R}_{1}, \boldsymbol{R}_{2}\right)=\left\|\boldsymbol{R}_{1}-\boldsymbol{R}_{2}\right\|_{F}$

Setup

- $\boldsymbol{R}_{1}, \ldots, \boldsymbol{R}_{n} \in S O(3)$ random sample from (1) with central orientation S
- Use estimator $\widehat{\boldsymbol{S}}=\underset{\boldsymbol{S} \in S O(3)}{\arg \min } \sum_{i=1}^{n} d_{E}^{2}\left(\boldsymbol{R}_{i}, \boldsymbol{S}\right)$
- $\boldsymbol{\Phi}(\hat{h})$ skew-symmetric matrix associated with $S^{\top} \widehat{S}$

$$
\exp [\boldsymbol{\Phi}(\hat{\boldsymbol{h}})]=\boldsymbol{S}^{\top} \widehat{\boldsymbol{S}}
$$

- Define $r_{\hat{\boldsymbol{h}}}=\|\hat{\boldsymbol{h}}\|_{F}$ and $\boldsymbol{U}_{\hat{\boldsymbol{h}}}=\hat{\boldsymbol{h}} /\|\hat{\boldsymbol{h}}\|_{F}$

Asymptotic Result

Under this setup

$$
\begin{equation*}
\sqrt{n} \hat{\boldsymbol{h}} \xrightarrow{d} M V N_{3}\left(\mathbf{0}, \frac{c}{2 d^{2}} I\right) \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$ where

$$
c=\frac{2}{3} E\left(1-\cos ^{2} r\right) \quad \text { and } \quad d=\frac{1}{3} E(1+2 \cos r)
$$

or equivalently

$$
\frac{2 n d^{2}}{c}\|\hat{\boldsymbol{h}}\|_{F}^{2} \xrightarrow{d} \chi_{3}^{2}
$$

ECDF for Projected Mean

Confidence Region

- By definition of the Riemannian distance d_{R} :

$$
\|\hat{\boldsymbol{h}}\|_{F}^{2}=r_{\hat{\boldsymbol{h}}}^{2}=d_{R}(\boldsymbol{S}, \widehat{\boldsymbol{S}})^{2}
$$

- A $100(1-\alpha) \%$ confidence region for S

$$
\begin{equation*}
\left\{S \in S O(3): \frac{2 n \hat{d}^{2}}{\hat{c}}\left[d_{R}(S, \widehat{\boldsymbol{S}})^{2}\right]<\chi_{3,1-\alpha}^{2}\right\} \tag{4}
\end{equation*}
$$

where

$$
\hat{c}=\frac{1}{6 n} \sum_{i=1}^{n}\left\{3-\operatorname{tr}\left[\left(\widehat{\boldsymbol{S}}^{\top} \boldsymbol{R}_{i}\right)^{2}\right]\right\} \quad \text { and } \quad \hat{d}=\frac{1}{3 n} \sum_{i=1}^{n} \operatorname{tr}\left(\hat{\boldsymbol{S}}^{\top} \boldsymbol{R}_{i}\right)
$$

- (4) describes confidence region centered at \widehat{S} with radius

$$
\sqrt{\frac{\hat{c} \chi_{3,1-\alpha}^{2}}{2 n \hat{d}^{2}}}
$$

Pivotal Bootstrap ${ }^{1}$

1. Randomly select n rotation matrices with replacement from the sample to form a bootstrap sample $\boldsymbol{R}_{1}^{*}, \ldots, \boldsymbol{R}_{n}^{*}$
2. Compute the projected mean of the bootstrap data set, \widehat{S}^{*} and form the test quantity $\frac{2 n \hat{d}^{* 2}}{\hat{c}^{*}}\left[d_{R}\left(\widehat{\boldsymbol{S}}, \widehat{\boldsymbol{S}}^{*}\right)^{2}\right]$ where \hat{c}^{*} and \hat{d}^{*} are computed from the bootstrap sample by replacing \boldsymbol{R}_{i} and \widehat{S} with R_{i}^{*} and \widehat{S}^{*}
3. Repeat steps 1 and $2, m$ times to obtain m values of the quantity $\frac{2 n \hat{d}^{*} 2}{\hat{c}^{*}}\left[d_{R}\left(\widehat{\boldsymbol{S}}, \widehat{\boldsymbol{S}}^{*}\right)^{2}\right]$
4. Define $\hat{q}_{1-\alpha}$ such that $P\left(\frac{2 n \hat{d}^{* 2}}{\hat{c}^{*}}\left[d_{R}\left(\widehat{\boldsymbol{S}}, \widehat{\boldsymbol{S}}^{*}\right)^{2}\right] \leq q_{1-\alpha}^{*}\right)=1-\alpha$
5. $\left\{\boldsymbol{S} \in S O(3): \frac{2 n \hat{d}^{2}}{\hat{c}}\left[d_{R}(\boldsymbol{S}, \widehat{\boldsymbol{S}})^{2}\right]<\hat{q}_{1-\alpha}\right\}$.
[^0]
Other Confidence Region Methods

- Prentice (1986) and (1989) used asymptotics for eigenvalues and eigenvectors to construct a confidence region for \widehat{S}
- Fisher, Hall, Jing and Wood (1996) use the Prentice statistic and a pivotal bootstrap procedure to achieve better coverage rates
- Chang and Rivest (2001) state a result more general than (3) that is difficult to implement

SIMULATION STUDY

Study parameters:

- Distributions: matrix Fisher, circular-von Mises
- Sample Sizes: $n=10,20,50,100$
- Circular Variances: $\nu=0.25,0.50$ and 0.75
- Simulated Samples: 10, 000 per combination
- Bootstrap Sample Size: $m=300$
- Error rate: $\alpha=0.1$

Coverage Rate Comparison

Projected Median

- The projected median

$$
\widetilde{\boldsymbol{S}}=\underset{\boldsymbol{S} \in S O(3)}{\arg \min } \sum_{i=1}^{n} d_{E}\left(\boldsymbol{R}_{i}, \boldsymbol{S}\right)
$$

- (3) holds for $\widetilde{\boldsymbol{S}}$ with

$$
c=\frac{1}{6} E(1+\cos r) \quad \text { and } \quad d=\frac{1}{12} E\left(\frac{1+3 \cos r}{\sqrt{1-\cos r}}\right)
$$

ECDF for Projected Median

Simulation Study for Median

- \widetilde{S} cannot be written as a function of eigenvalues and eigenvectors
- The pivotal boostrap from before can still be used using by replacing \hat{c} and \hat{d} with
$\tilde{c}=\frac{1}{12 n} \sum_{i=1}^{n}\left[1+\boldsymbol{\operatorname { t r }}\left(\widetilde{\boldsymbol{S}}^{\top} \boldsymbol{R}_{i}\right)\right]$ and $\tilde{d}=\frac{\sqrt{2}}{24 n} \sum_{i=1}^{n} \frac{3 \operatorname{tr}\left(\widetilde{\boldsymbol{S}}^{\top} \boldsymbol{R}_{i}\right)-1}{\sqrt{3-\operatorname{tr}\left(\widetilde{\boldsymbol{S}}^{\top} \boldsymbol{R}_{i}\right)}}$
- Use same simulation parameters for the projected mean for the median

Coverage Rate Simulation \widetilde{S}

Future Work

- Look at more interesting cases, e.g. grain boundries

Thank you

stanfill@iastate.edu

References:
M. Prentice. Orientation statistics without parametric assumptions. JRSS Series B, 48(2):214-222, 1986.
M. Prentice. Spherical regression on matched pairs of orientation statistics. JRSS Series B, 51(2):241-248, 1989.
N. Fisher, P. Hall, B. Jing, and A. Wood. Improved pivotal methods for constructing confidence regions with directional data. JASA, 91(435):1062-1070, 1996.
T. Chang and L. Rivest. M-estimation for location and regression in group models: A case study using stiefel manifold. The Annals of Statistics, 29(3): 784-814, 2001

[^0]: ${ }^{1}$ First proposed in Dr. Zhang's M.S. Thesis completed under Dr. Dan Nordman

